
Journal of Structural Geology, Vol. 17, No. 12, pp. 1785 to 1788,1995 
Copyright @ 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0191-8141/95 $9.50+0.00 

0191-8141(95)ooo77-1 

Brevia 

SHORT NOTES 

A method for quantifying the kinematics of fault-bend folding 

STUART HARDY 

Institute of Earth Sciences (Jaume Almera), Consejo Superior de Investigaciones Cientificas (CSIC), Marti i 
Franques s/n, 08028 Barcelona, Spain 

(Received 17 March 1995; accepted in revised form 28 June 1995) 

Abstract-A Eulerian velocity description of deformation and a block contact condition are used to quantify the 
kinematics of fault-bend folding. The orientations of active axial surfaces (velocity boundaries) and the changes 
in slip necessary across them can be quantified using this approach. The method is general and includes previous 
geometric models of fault-bend folding. 

INTRODUCTION 

Since the concept was first introduced by Rich (1934), 
fault-bend folding has been the subject of much research 
(Suppe 1983, Zoetemeijer et al. 1992). In recent years, 
considerable effort has focused upon geometric model- 
ling of such structures (Suppe 1983, Suppe et al. 1991) 
and on the relationship between fold growth and sedi- 
mentation (Hardy & Poblet 1995). The majority of these 
studies have been based on the geometric model of 
Suppe (1983) which describes the relationship between 
fault-shape, fold-shape and slip for both simple and 
complex fault-bend folds. For a simple step in decolle- 
ment fault-bend fold, these relationships are: 

tan 0 = sin 2y/(2cos2 y + 1) (1) 

/I = 180” - 2 y (2) 

R = sin (y - B)lsin (y), (3) 

where 0 is the dip of the fault, y is the axial angle of the 
fault-bend fold, /3 is the dip of the forelimb and R is the 
change in slip across the fault-bend fold (Fig. 1). Re- 
cently, such models have been translated into velocity 
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Fig. 1. The geometric model of fault-bend folding of Suppe (1983) for 
a simple step in decollement and the relationship of defined angles and 

axial surfaces. 

descriptions of deformation, allowing the combination 
of tectonic and sedimentary modelling (Hardy & Poblet 
1995). This short note will present and apply a general 
method for quantifying the kinematics of fault-bend 
folding. 

THE VELOCITY DESCRIPTION OF 
DEFORMATION AND THE BLOCK CONTACT 

CONDITION 

Waltham & Hardy (1995) presented the velocity de- 
scription of deformation in some detail and velocity 
fields were derived for a range of geological processes 
(for example, pure shear, inclined or vertical simple 
shear, bulk rotation and compaction). The velocity 
description of deformation is applied here to hanging- 
wall deformation by layer parallel slip in which cross- 
sectional area is preserved. It was noted that the velocity 
fields derived for a given deformation mechanism can- 
not be entirely arbitrary and, in particular, they must: 
(a) conserve mass; and (b) not produce space problems. 
Where processes such as pore collapse, dissolution/ 
precipitation and pressure solution are important, this 
approach may not be applicable. The first of these 
constraints requires that the velocities obey the conti- 
nuity equation (Birkoff 1955): 

v . (pv) + ap/at = 0, (4) 

where p is density, v is vector velocity and t is time. If 
density is assumed to remain constant, this equation 
reduces to: 

v*v = 0. (5) 
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Fig. 2. The velocity model of fault-bend folding of Hardy & Pobkt 
(1995), showing the horizontal and vertical velocities in the three 
velocity domains, and the angles vvl and &. S is the slip rate, R is the 
reduction in slip across the fault-bend fold, and u and v are the 

horizontal and vertical velocities, respectively. 

For two-dimensional processes (assuming conservation 
of cross-sectional area), the relevant equation is: 

au/ax + aday = 0, (6) 

where u and v are the horizontal and vertical velocities 
respectively. 

Waltham & Hardy (1995) showed that a further con- 
straint on possible velocity fields applies when there is a 
series of distinct regions, each of which is governed by 
different velocity equations. These regions may be dis- 
tinct fault blocks, or they may be different velocity 
regions above a fault-fold structure (Fig. 2). The con- 
straint is that adjacent blocks or regions should remain in 
contact at all times with no gaps appearing between 
them and no overlapping areas. Waltham & Hardy 
(1995) showed that this contact condition required that, 
at all points along a fault or a velocity boundary, f(x): 

v1 - U, . aflax = v2 - u2. aflax, (7) 

where v1 and u1 are velocities for the block or region to 
be left, and v2 and u2 are velocities for the block or 
region to the right, of the boundary. 

APPLICATION TO THE KINEMATICS OF 
FAULT-BEND FOLDING 

Equations (6) and (7) can be used to investigate the 
kinematics of fault-bend folding, initially for the case of 
a simple step in dtcollement (Fig. 1). In this geometric 
model, displacement is parallel to the local fault orien- 
tation and the fold grows as a result of kink-band 
migration (Suppe 1983). This leads to three distinct 
velocity domains above the thrust (Fig. 2). In Domain 1, 
displacement is parallel to the lower dtcollement; in 
Domain 2, displacement is parallel to the ramping fault 
plane and in Domain 3, displacement is parallel to the 
upper decollement. Slip is conserved between Domains 
1 and 2, but is consumed across the boundary between 
Domains 2 and 3. The horizontal (u) and vertical (v) 
velocities in the three domains are given by (Hardy & 
Poblet 1995): 

Domain 1 u = -s (8) 

v=o (9) 

Domain 2 u = -s+cos (e) (10) 

v = S * sin (0) (11) 
Domain 3 u = -R-S (12) 

v = 0, (13) 

where S is the slip rate (m ka-l), 8 is the thrust ramp 
angle and R is the reduction in slip across the fault-bend 
fold (equation 3). As the horizontal and vertical veloci- 
ties within each domain are constant, the continuity 
condition (equation 6) is clearly satisfied. The necessary 
orientations (+r and q2) of the boundaries between the 
domains can now be derived by substituting the relevant 
velocities into equation (7). For domains 1 and 2, this 
gives: 

S.sin(B) + S .COS (ep aflax = S-aflax (14) 

which, rearranging, gives: 

aflax = sin (ey(i - COS(~)). (15) 

For 8 = 30”, equation (15) predicts that the velocity 
boundary cf) between Domains 1 and 2 must be inclined 
at an angle, vi of 75”, which is the bisector of the lower 
bend in the decollement (cf. Suppe 1983). Secondly, 
equation (7) can be used to derive any changes in slip (R) 
necessary between Domains 2 and 3, given the inclina- 
tion (q2) of the boundary between them. Substituting 
the velocities from Domains 2 and 3 into equation (7) 
gives: 

R . Se aflax = S. sin (0) t 

which, rearranging, gives: 

R = sin (@/(aflax) 

seCOS(~). aflax (16) 

~cos(~). (17) 

When the boundary is that given by Suppe’s equations 
for a ramp dipping at 30”, i.e. y = 60” or r+!~~ = 120”, 
equation (17) predicts a slip ratio (R) of 0.577, which is 
identical to that predicted by equation (3). Indeed, the 
fault-bend fold model of Suppe (1983) is just a specific 
instance, which preserves both line length and bed 
thickness, of this more general kinematic model. 

The power of the approach described here is that, for 
an arbitrary inclination of the upper velocity boundary, 
the method predicts the change in slip necessary across 
it. Slip ratios for a range of boundary inclinations (1~~) 
are shown in Fig. 3 for a ramp dipping at 30”. From Fig. 3 
it can be seen that, for values of ly, less than 75”, an 
increase in slip is required across the boundary, while for 
values greater than 75”, a decrease in slip is required. 
Note that when lcf2 is 150”, the change in slip is zero, as 
this is the condition of displacement parallel to the 
velocity boundary resulting in a through-going thrust 
with no bend in the detachment. 

The method also applies to more complex, high- 
angle, reverse faults such as that illustrated in Fig. 4. 
Figure 4(a) shows a model of hangingwall deformation 
in which slip rate parallel to the fault segments is con- 
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Fig. 3. Graph showing the slip ratios (R) necessary for a range of 
orientations of the velocity boundary between the ramp and upper 
dtcollement (&) for the case of a simple step in dtcollement fault- 

bend fold with f3 = 30”. 

Fig. 4. Models of fault-bend folding in the hangingwall of a seg- 
mented reverse fault whose dip decreases from 60 to 0” by 15” across 
each fault segment. (a) Slip is constant parallel to the fault and is 
conserved across each axial surface. (b) Slip is imposed on the bottom 
fault segment and is consumed across each active axial surface. 
Horizontal and vertical velocities are shown for the first two domains 

in each case. 

stant and conserved across each active axial surface. The 
block contact condition (equation 7) has been applied to 
determine the orientation of each of the velocity bound- 
aries ensuring that area is conserved in the hangingwall. 
In contrast, in Fig. 4(b), displacement is imposed (speci- 
fied) on the lowest fault segment and propagated up- 
wards through the hangingwall and across each of the 
active axial surfaces which dip at 30”. As the velocities in 
the lowest segment and the orientation of all the active 
axial surfaces are known, equation (7) allows the veloci- 
ties and resultant slip rate in each domain to be calcu- 
lated sequentially from right to left through the 
hangingwall. For the case illustrated in Fig. 4(b), this 
analysis indicates that the slip parallel to the fault must 

decrease from S in the lowest domain to 0.499s in the 
uppermost domain. In fact, the horizontal and vertical 
velocities within each domain are identical to those 
predicted by inclined simple shear (60” antithetically) 
(cf. Waltham & Hardy 1995). 

The faults in Fig. 4 could also be treated as extensional 
structures and the kinematics of hangingwall defor- 
mation associated with extensional faulting analysed. 
Extensional displacement (from left to right) requires 
that the horizontal and vertical velocities within each of 
the domains in Fig. 4 change sign compared to the 
velocities under compression. If equation (7) is then 
applied as before, the derived orientations of axial 
surfaces and changes in slip rate are identical to those for 
compression, but with a different sense of movement. 
More complex geometries, such as ramp-flat structures, 
could also be treated in this manner. 

Thus the approach allows both the necessary orien- 
tations of active axial surfaces (when slip is specified) 
and changes in slip (when active axial surfaces are 
specified) to be derived for a given model of hangingwall 
deformation. Geometric and kinematic models can be 
checked easily for area conservation in this manner. 
However, some caution must be used when applying 
equation (7), as while it ensures the kinematic admissi- 
bility of a given model, it says nothing with regard to its 
geological plausibility. Therefore, care must be taken to 
ensure that the deformation mechanism implicit in the 
derived kinematic model is compatible with the geologic 
setting under consideration. 

CONCLUSIONS 

This short note has shown the applicability of the 
velocity description of deformation and the block con- 
tact condition (Waltham 1992, Waltham & Hardy 1995) 
to the kinematics of compressional fault-bend folding. 
The power of this approach is that it encompasses 
previous geometric approaches (giving identical re- 
sults), but allows the kinematic consequences of a range 
of orientations of velocity boundaries (active axial sur- 
faces) to be quantified. Complex, high-angle, fault-bend 
fold kinematics, and hangingwall deformation associ- 
ated with extensional faults, may also be quantified 
using this method. The derived velocities can then be 
used in simple mathematical models to test the geo- 
metric consequences of such differences in kinematics 
(cf. Hardy & Poblet 1995). 

Acknowledgements-Thanks to Dave Waltham and Josep Poblet for 
many discussions on this topic and to Craig Docherty for reading an 
earlier version of this note. The constructive comments made by 
reviewers Don Medwedeff and David Ferrill significantly improved 
this paper. The receipt of a Royal Society European Science Exchange 
Post-Doctoral Fellowship is gratefully acknowledged. 

REFERENCES 

Birkoff, G. 1955. Hydrodynamics. Dover Publications, New York. 



1788 S. HARDY 

Hardy, S. & Poblet, J. 1995. The velocity description of deformation. 
Paper 2: Sediment geometries associated with fault-bend and fault- 
propagation-folds. Mar. Petrol. Geol. 12,165-176. 

Rich, J. L. 1934. Mechanics of low-angle overthrust faulting as 
illustrated by the Cumberland Thrust Block, Virginia, Kentucky 
and Tennessee. Bull. Am. Ass. Petrol. Geol. 18,1584-1596. 

Suppe, J. 1983. Geometry and kinematics of fault-bend folding. Am. 
.I. Sci. 283,684-721. 

Suppe, J., Chou, G. T. & Hook, S. C. 1991. Rates of folding and 

faulting determined from growth strata. In: Thrust Tectonics (edited 
by McClay, K. R.). Chapman &Hall, 105-121. 

Waltham, D. ,,1992. Mathematical modelling of sedimentary basin 
processes. Mar. Petrol. Geol. 9,265-273. 

Waltham, D. & Hardy, S. 1995. The velocity description of defor- 
mation. Paper 1: Theory. Mar. Petrol. Geoi 12, 153-164. 

Zoetemeijer, R., Sassi, W., Roure, F. & Cloetingh, S. 1992. Strati- 
graphic and kinematic modeling of thrust evolution, northern Apen- 
nines, Italy. Geology, 20, 1035-1038. 


